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/ ABSTRACT

A dynamical model representing linear barotropic Rossby waves is combined with GEOSAT data from the
northwest Atlantic Ocean. The model is too simple to be very realistic in this complex area, but the problem
of combining any model with real data raises a number of issues that we address. The combination method
used is sequential estimation in the form of a filtering-smoothing operation. A fraction of the total signal
variance ( 5%' to 15(', ) in the area over several spacecraft repeat cycles is demonstrated to be consistent with live
Rossby waves. That the result is robust is demonstrated by recovering known signals added synthetically to the
real data.

1. Introduction of error terms, which are complex functions of fre-
quency, wavenumber and geography, as well as un-

Data from altimetric satellites produces a space/time usually intricate space/time sampling issues (this latter
coverage of the ocean which is unachievable by any problem has been discussed specifically in Wunsch
other known instrument. It has long been anticipated 1989a). Our purpose here is to find methods for using
(e.g., TOPEX Science Working Group. 1981 ) that the real data, so as to study a real oceanic question in the
most useful way to employ such data would be to corn- context of a model that is sufficiently sophisticated to
bine it with dynamical ocean models-treating the al- be representative of much more rcalistic ones. But the
timetric data as boundary conditions on the model. A focus is on the novel data handling and interpretation
number of authors (e.g., Marshall 1985: Hurlburt 1986: issues.
Webb and Moore 1986; Malanotte-Rizzoli and Hol- A number of previous papers have appeared (e.g.,
!and 1986, 1989; De Mey and Robinson 1987) have Malanotte-Rizzoli and Holland 1989) that have at-
studied, by simulation, ways of combining altimetric tempted to estimate mesoscale eddy variability from
data with various types of models, both steady state simulated altimetric measurements. Most of these pa-

and timne varying. smltdatmti esrmns oto hs a

Tese studies have tended to focus on the model pers use procedures derived from meteorological as-
aspe ts h ave prob em, witofos the "datatoly similation methods and are somewhat pessimistic con-

aspects ofthe problem. with the 'data" being not only cerning the results. Our philosophy is different. De-
simulated, but assumed o'perfect" in ways ranging from signers of altimetric missions (e.g., TOPEX Science
the assumption of zero observational noise, to as- Working Group 1981 ) recognized from the beginning
sumptions about space/time sampling so idealized as that the sampling characteristics dictated by orbits sat-
to be physically inconsistent with orbital dynamics. The isfying Newton's laws of motion were ill-suited to
emphasis here is the opposite one, we begin exploration mapping the mesoscale although a determination of

of the issues of combining real data with a somewhat the spectral characteristics of the msoscale would be

too simple dynamical model, possible. Rather, the idea is that altimeters could define
Actual altimetric systems are quite complicated (e.g.. the much larger space/time scale variability\ where no

Wunsch and Gaposchkin 1980) involving a long list other instrument system can even begin to produce

useful observations.
We advance the idea that an cddy-resolhing moKdel-
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correctly computes the detailed structure of individual be to discretize this equation so as to obtain a suitable
eddies. Accomplishing (b) is obviously much more dif- form. However. in this simple case, any numerical
ficult both for the modeler and the oceanographer who problems associated with finite differences are easily
must use nonaltimetric methods to measure details of avoided by using an analytical solution. The solution
individual eddies. If(b) is achieved, (a) is then auto- adopted consists of Al horizontal modes:
matically satisfied. But for many purposes (b) may not tit if
matter a great deal if (a) is achieved. 7(x. , ,) (,,, sin ( K,* X - e,,,t + 0,,,) (2)

We do not know the extent to which a model that
is forced to be consistent with large-scale constraints
is then improved in its ability to get the mesoscale where X = (., iy) is the horizontal position. K,,, = (k,,.
"right", we are not aware of any published literature /,,,) the wave vector. a ... and f, the wave amplitude
on the subject. It seems possible that such constraints and initial phase and w,,, the associated frequenc\. For
will be very powerful ones as models improve. Much (2) to be a solution of( I ) the wave frequencies have
of what follows in this paper is directed at learning how to satisfy the dispersion relation:
to force the large-scale constraints. The model, being w,,, = -3k,,,/(k,,,1 2 + ,,,). (3)
linear, does not itself calculate the unobserved higher
wavenumbers. But the methods we explore can be From basic trigonometric relations. (2) is transfbrmed
adapted to nonlinear models and we expect eventually into
to use these methods with such models...-

7(x.v , )= [q2 ,, I(t) cos(K,,, ')
2. The dynamical model and the observation equation ,,,

Our context is that of control methods-combining + q,,P,( /) sin (K,,,. X)] (4)
explicitly a dynamical evolution equation and an ob- where
servation equation (see Wunsch 1989b, for a tutorial).

q,- 1i(t) = a,,, sin(0,, - o,,,t)

a. Dynanical equation q2,,,( =) a,,, cos( 0,,, - w,,t) ( 5a)
Consider the part of the ocean displayed in Fig. L,

we refer to this region as the "focus area." The region and accordingly
is a complex one, encompassing the Gulf Stream and ( 5
its recirculations as well as portions of the interior of a,,, = q,, + /_l (Sb)
the subtropical gyre. We will drastically over-simplify The evolution of the new variables (q2,,, . q,,,) over
the known dynamics by representing the signals we a time step At = tk, I - tA is given by the linear equation:
seek by the linearized barotropic Rossby wave equa-
tion: [q2 p, [cos(w,,,At) -sin( ,,,.At) ] 1,,,

a .I o. 1 Fi 1

Our goal is to combine the GEOSAT altimetric ob- with
servations with ( I ) to make estimates of the surface Fq2,,1 [ ,,sinO,, 1 (6b)elevation q. One can choose better regions than the nq2,,, ,,, cos0,,, b
focus area to argue that ( I ) might be realistic: we persist
in the present combination both because (i) we even- where the index k refers to values taken at time i.
tually expect to replace ( I ) in this area with a more Denoting b A.. the 2 X 2 matrix in (6a). we define
complex model and would like to understand the be- the 2ti 2'.11 block-diagonal matrix:
havior of the data before doing so. but (ii . the use of
a model which is known to be inadequate allows us to A(k) = diaglA..4 . • . ].4i]
address plainy difficult questions of how data/model
combinations should be interpreted. Even the most so- Eq. ( 6a ) can then he re ritten for all modes:
phisticated of extant oceanographic models will fail in q, - I) A (k )q)/A) wt A)t(7)
some way sometimes these failures will be subtle and
ditficult to perceive, and hence easy to disguise. In the where the \ector q is comprised of all \ariao es q,. A
present case, model failure will be obvious: nonetheless, new term w has been appended to allo\\, in a simple
the exercise is not vacuous, and we will return to the way. the system to be pcrturbed b\ c\ternal forcings.
interpretation of the result at length below, such as the wind tor example. E-quation (7) is a linear

We rewrite ( I ) in a standard form of linear state dynamical equation in the standard form with the
space (control) theory. A conventional approach would "state vector" q, the "state-transition matrix" A. and

IILl mi I II l ~ lll••I I
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Fic. I. The focus area with the ground tracks of the GEOSAT repeat cycle 9.

the "process noise" w; it is known as the "state equa- .....
tion," or more simply as the "dynamical model." Ih(X, 1) = [ [q2,, I() cos(K,, X)

,fl =1

b. Observation equation + q2,,(I) sin(K,,,. X)] + n(X. 1) (9)

The altimetric observations are of the form

+ n (8) It takes GEOSAT about 5 minutes to cover the longest
arc in the focus area. Because barotropic Rossby waves

where n is the variable appearing in ( I ) and n is the have periods of several days to several months. all
"measurement noise." representing the entirety of the measurements made along a single track are treated as
elevation field h not describable by ( I ). Written in simultaneous. Therefore. given r measurements on a
terms of the state variables. (8) becomes track, (9) yields:

KtJ k = _cos(KI, Xr) sin(K . X,) cos(K,,. X) sin(K,11 . X,)J f q.J + L:] (

or. in matrix form. ellipsoid and includes the mean component owing to
the deviation of the solid earth from the refe2rence el-
lipsoid-a surface that we will refer to as tile "geoid":

where Cis the r X 2 , matrix in the preceding equation. the mean elevation relative to the geoid owing to the
Thecombination of(7)%with(I Oh) is a standard control time average ocean circulation: a time \ar ing com-
form, of dynamical equation and observation equation. ponent owing to tluctuations in the ocean circulation:
Before proceeding, we need to describe the dataset and tidal contributions: and a number of mean and time
how it was produced. varying error terms. (Sonic \orkers prefer to think of

the tidal contributions as being a time dependent gecoi-
3. The data reduction dal component.)

The data as used were produced as lollo\ws:
Data from ten successive 17-day repeat cycles of the

GEOSAT Exact Repeat Mission are used here. These [he mean of the data along each of'the tracks in the
arc repeat cycles 9 to 18 covering tile period 24 March focus area was corrected for (he tides using the % aues
to 9 September 1987. After a quality check, a total of produced b the (iEOSA[ project from the Sch\\id-
403 tracks crossing the focus area were retained. T heN erski (198(0) model. These values \\ere then a\eraged

I r ten repeat cycles along each arc. producing a mecancontain nearly 30 000 three-second average altimctric value r or I each arc. prod1% ng a dis-
measurements. ale W ft ehere , is along-track dis-

The sea surface elevation measured along each sub- tance. We define the deviation. h as
satellite arc is the absolute value relative to a reference It -
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It is these numbers which are referred to in the obser- where E denotes an expected value, AX, is a measure
vation Eq. (8). of the distance between X, and X, and f is a function

No corrections other than the tide were made to the to be determined. Most results of the linear state space
data, because we have been unable to convince our- theory are derived assuming that the measurement
selves (Campbell 1988) that they can be made effec- noise is white (i.e., not time-correlated) and has a zero
tually. Whatever error is thus left in h is included in mean. In that case ( I I ) takes the form
the noise term, n. There is one error, that owing to the
orbit, which must be considered separately. E[n,(k)n(/)] = R, 6k1 (12)

The largest of all known errors in h is that owing to where 6A, is the Kronecker delta and R,, is a spatial
the crude estimates the GEOSAT project provides for correlation function with variable AA',,. In the case
the spacecraft radial position. For this reason, " con- where the measurement noise is not white but can be
tains errors formally of several meters. It is well known represented by a first order Markov process excited by
(e.g. Tai 1988a) that these errors are mainly on the a white noise e.. when the noise is red), the problem
scale of the Earth's circumference, and this confine- can still be recast in terms of the usual theory with
ment to long wavelengths is the basis for many different white noise by using the measurement differencing
error removal schemes for studying mesoscale phe- technique of Bryson and Henrikson(1968). However,
nomena. In the present example, we wish to demon- the actual correlation function is probably more com-
strate how known dynamics ( I ), plus stipulation of plex than that of a simple white or red noise. Several
the structure of the error can be used in combination characteristic correlation times are likely to play im-
to remove the orbit error as part of procedure for es- portant roles. Wunsch (1986) uses two characteristic
timating I?. We thus leave these orbit error components correlation times to model the orbit error alone. The
in our working data. (In the long run, it is much pref- nonmodeled fraction of the oceanic signal should also
erable to have the major error components removed dictate some important time scales such as. for ex-
in advance, deterministically, from the data- future al- ample, the characteristic propagation time of mesoscale
timetric missions should have much reduced orbit er- eddies. Nevertheless, to keep this problem simple, we
rors. But there will always be some residual character- will make the working assumption that the measure-
ized by the orbital dynamics and the present methods ment noise is white and use the parameterization (12).
should be even more effective then, because the error Correlations between errors in successive tracks are ig-
suppression algorithm will work with a much higher nored. The major effect of this simplification is to leave
signal-to-noise ratio.) a larger apparent error in the results than is actually

The calculation ofh as the deviation from the longer necessary (spatial correlations, along any individual
term mean arc is itself ultimately intolerable. Forming track are however, retained in this tbrmalism). Wunsch
means from samples at 17-day intervals aliases motions and Imawaki (1989) show how between-track corre-
of periods of 34 days and shorter into longer periods lations can be used in a practical scheme. The exact
and produces an erroneous mean and erroneous esti- form of the measurement noise covariance matrix R
mates of the variability. These errors are tolerable for will be determined in section 7.
present purposes because within any given 17-day pe- For similar reasons, we will assume that the process
riod many arcs are measured within the area, and the noise of Eq. (7) is white in time. and of zero-mean
constancy of coefficients in (I ) is consistent with the with
assumption underlying Eq. (10)-which has constant
coefficients-that the region is statistically homoge- E[ w,(k)w,(i)] = I,,bV. (13)
neous. Thus as Wunsch ( 1989a)discusses, the aliasing In addition, observation and process noises are sup-
is not computable as simply that from a 34-day Nyquist posed uncorrelated. Depending on the experiments

period, nor is it as serious. Nonetheless there is aliasing. performed. different hypotheses will be made concern-

and one must ultimately (when a more accurate model ing the spatial structure of the process noise covanance

is being used) avoid this procedure. For the present, matrix r.

we believe that other errors are dominant and wish to

retain the comparatively simple data reduction pro- 5. Estimation method
cedure.

Given a dynamical evolution rule (7), a set of ob-
4. Description of noise statistics servations (10b) with known statistics ( 12. 13). we

pose the problem of making the optimal estimate of 7,
We can make rough estimates of the spectral char- where "'optimal" is in the convcntiond sensc ofa min-

acteristics of the measurement noise. One expects the imum mean-square error criterion. 17 is our "'state vari-
correlation function to be of the general form (e.g.. able'" and we are tackling a -'state estimation" problem.
Wunsch and Zlotnicki 1984): This problem is a much-studied classical one (e.g.. An-

derson and Moore 1979). It is convenient to attack
E[n,(k)n,(l)] =./[It14 - ll, A',, ( I i) the general problem by first considering the reduced
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problem of asking how best to combine the data and combined in a weighted average with the value pre-
model when the estimate is to be made sequentially. dicted from the dynamics in the form:
That is, we suppose that the data are to be employed
as though they were arriving in "real time" and only 4(klk) = i(klk - 1)
dataprecedingoratthe "presenttime," t, can beused + G(k)[h(k) - C(k)4(klk - 1)] (17)
to estimate the ocean state at this time. This problem
is the classical "sequential filtering problem" of control with new error,
theory. Our goal isto use all the data, which realistically P(klk) = [1- G(k)C(k)]P(kik - 1). (18)
have been stored, so that data future to time t are em-
ployed to estimate the state at t. This problem is known I is the identity matrix and G is the "Kalman gain

as a "smoothing" one. Because most smoothing al- matrix" defined by
gorithms are written so as to contain the optimal filter G(k) = P(k I k - I )CT (k)
as an explicit first step, the digression through the fil-
tering problem is useful. X [C(k)P(kIk - I)C(k) + R(k)] ': (19)

G weights the forecast and the observations by their
a. Kalman filtering appropriate relative errors. This set of equations. ( 15)

The solution to the optimal, sequential filtering to ( 19), is a conventional form of the Kalman filter.
problem is the Kalman (1960) filter (see for example, requiring the inversion of a single r X r matrix in ( 19).
Sorenson 1985: Ghil et al. 1981: Wunsch 1989b) and Other algebraically equivalent forms exist with various
we will content ourselves with merely writing down computational and numerical merits. Our choice is

the resulting algorithm. The filtering process can be probably not the best possible one but it proves to be
divided into two steps. Assuming that the state estimate sufficient for this study [a variant of( 18) is used below

and the associated error covariance matrix are known in Eq. (41 ). For a derivation of ( 15 to 19) and a
at time tk-1 l the dynamical model [Eq. (7)] is first discussion of alternative forms of the Kalman filter the
used to extrapolate these quantities from time tA-I to reader is referred to Anderson and Moore ( 1979):

tk. The new estimate of the state is denoted 4(k I k - I ), Wunsch ( 1989b) provides a heuristic derivation based
where (k k - I ) indicates that the variable is estimated upon ordinary least squares.
at time tk using data up till time tk-, only. At this
point, the estimation error, 4(k) is the difference be-
tween the true value q(k) and the estimate of it: 4(k) The Kalman filter permits sequential estimation in
q(k) - 4(kIk - I ) and the corresponding error co- optimum fashion. But as we noted earlier, oceano-

variance matrix is P(kl k - I) = E[4(k)4(k)T]. Then, graphic data are normally stored, and the data "'future"
the new measurements available at tk are combined to time t obviously contain information useful for es-
with the model forecast to produce an updated state timating the oceanic state at t and earlier-information
estimate 4(k Ik) with a reduced error covariance matrix that we would like to use. "'Smoothers" are estimators
P(kIk). The filtering process starts from known ex- using such formally future data. In the present study.
pected values of the initial state and its covariance: we are specifically interested in what is called fixed-

4i(010)= E[q(0)] ( 14a) interval smoothing: the available dataset spans a fixed
interval of time [t, t,] and we seek optimal state es-

P(010) timates at all measurement times, using all available
E[q(0) - 4(00)j[q(0) - 40( 14b) measurements, i.e., we seek estimates 4(kI N), for N

00 4(00)T. fixed and {k = ... , N}. Various algorithms have

The state is propagated forward in time using the been proposed to solve this optimal smoothing prob-
model, but with w set to zero (its expected value) be- lem. Most of them include the determination of the
cause we have no other information yet available about filtered state estimates so that the Kalman filter is part
it: of these algorithms. Such is the case for the Rauci -

Tung-Striebel (1965) algorithm we use. Havir, ob-
4(klk- ) =A(k-- i)4(k- Ilk-I) (15) tained all filtered state estimates up to 4, A'N),

and the error of this predicted state is easily shown to smoothing is performed backwards, i.e., with the k-

be: index going from N - I to 1. The smoother equations
are

P(klk- 1)=A(k- I)P(k- Ilk- I)AT(k- I) 4(kIN)=4(kk)

+ I'(k - I) (16) + G,(k)[(k + II N)' - q(k + IIk)] (20)

which is the sum of the model-propagated error in the P(k I) = P(kIk)
previous best-estimate plus that expected from the
missing knowledge ofw. The newobservationsare then + G,(k)[P(k + II N) P(k + I Ik)]G,'() (21)
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where G, is the smoothing gain matrix defined by sponding to ascending tracks are averaged together to
G,(k) = P(klk)A(k)P'(k + Ilk). (22) produce an "ascending track spectrum." A descending

track spectrum is computed in a similar way. The two
Equation (20) can be interpreted (Wunsch 1989b) as spectra are shown in Fig. 2. The waV\enumber is that
a weighted average of the previous estimate at time k measured along the track and denoted k,. X, -- 27rk,
done in the filtering step, with the inflormation gained is the corresponding wavelength.
about the true state determined from knowledge of how The two spectra appear to be very similar with their
the ocean actually evolved later. Again, the choice of respcctive 951, confidence intervals overlapping at al-
this particular smoothing algorithm may not be the most all wavenumbers. We thus \Nill suppose that the
best in terms of computational efficiency, but it is ,at- spectrum is to a good first approximation hori/ontall.
isfactorv. A review of different fixed-interval smoothing isotropic. A global power densit\ spectrum fornmed b\
algorithms can be found in Meditch ( 1973 ). Attention averaging the spectra from all tracks is denoted ,, and
has to be paid to issues ofcomputational stability with shown in Fig. 3. Because most along-track data show
some algorithms- for details, see for example, Anderson a marked slope owing to large scale orbit errors, the
and Moore ( 1979). spectra are markedly red. With increasing values ofk,.

One should be aware that smoothing is equivalent the power density decreases first very slowly but then
to the many forms of "adjoint" modelling now receiv- drops by more than a decade between k, 3 X 10
ing much attention in both meteorology and ocean- cycles per kilometer (cpkm) and k, 6 x 10 'cpkm
ography. If equivalent information is supplied, the two (spectral slope - -3.5 ). At higher values of the wave-
procedures yield the same result for the state estimate numbers, the log-spectrum exhibits a fairly linear de-
and differ only in computational form (see Bryson and crease. A linear least square fit yields a slope of --2.2
Ho 1975. p. 395: or Thacker 1986). A simple statement ± 0.1.
of the difference between the procedures is that the In Fig. 4, + is compared to the high energy area
adjoint methods gain efficiency by suppressing the average spectrum of Fu (1983). In Fu's spectrum. the
computation of the error covariances of the estimated power drops at the low wavenumber end because he
solution, while the smoothing algorithms actually focus detrended the data and is generally lower in value at
on these error estimates. The computational load for all wavenumbers because it was computed using repeat
smoothing is dominated by the error estimates and tracks from a time span of only 24 days. The repeat
suppressing them is very attractive. It is our belief how- tracks used to compute 1 span 170 days and as ex-
ever, that the error estimates are ultimately a neces- peeled have more power than Fu's at all wavenumbers.
sity-both because one cannot understand oceano- Fu (1983) found a spectral slope of -4.5 ± 1.5 at
graphic flows without a complete knowledge of the ac- wavelengths between 250 and 100 ki. consistent with
curacy of one's results, and because the recursive the -3.5 slope we find for 333 km -_ X, > 166 km.
updating of the oceanographic fields with newly ac- However, at smaller wavelengths, the slope of , is only
quired data can only be done if error estimates are -2.2. The reason for the generally steeper slope of the
available. But we emphasize that the methodologies
are fundamentally equivalent, and in parlicular, Tzip-
erman and Thacker ( 1989) show how to add error es-
timates to an adjoint formalism-albeit by incurring
computing problems equivalent to those in smoothing.

6. Spectral description of the data

Prior to employing the optimal filter or smoother.
we still have to specify the covariancc matrix of tlhe
measurement noise and choose the horizontal wave -. -

modes in the solution (2). For these purposes, a spectral
description of the data is most helpful. .

From the SEASAT data, Fu ( 193 ) computed and
analyzed wave number spectra in different oceanic r-
gions finding that the characteristics of the spcctra arc
dependent on the energ level of thc local nicsoscalc
activity, lere, we use (it0S\ l data fr, im tih toful , c ,.

area.
The spectra are computed linng o1l\ sCqu 'n ,,CC, \\.t. 11tihl', i ,,C tva.x tol 1h11cini hrdin t,(holid h1c)

(tracks) having at least I(X) CO %cLUtitc icctll l tle . , i hi hd Ihi e i n t 'k I i cit oT har onn tn i left etp-
i illx itit , , , mitll rit c inlicI \aI lot the &weit'i mgI trac k ,|il.Irkiti1

A total of I 10 tracks (37 descending and 7. asce idhn ) I W C.' ,1 ol n Ole fight 1 It tihe descending track splectrum. I he
meet this requirement. Thirty-su en spectra coreF- %%. ',uni hrs ,i" in c"w . ipr kilometer (cpkni).
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associated with barotropic Rossby waves. Barotropic
Rossby waves at periods accessible to us have spatial

0' -- scale much larger than that of typical baroclinic me-.o, soscale activity, of order 100 km. Much of the oceanic
mesoscale variability is thus to be considered as mea-

.I , surement noise. The wavenumbers dominated by me-
fl)0  soscale variability will be in the region where 4 has a

slope close to -2 (X, < 166 km) and therefore the
I ,mesoscale is modelled as a red noise process. It is only

C, k\ at wavelengths larger than 166 km that a significant
t to signal is seen to emerge from the red noise background.

as the slope of the spectrum suddenly changes. We will
take this wavelength of 166 km to be a lower limit for
the wavelength of the Rossby wave signals.

2 ,,,,,,,, At the low wavenumber end of the spectrum, the
,oto ., ,o-2, power contributed by the Rossby waves is most prob-

WAVE NUMBER (cPKM) ably very small compared to the power contributed by

FIG. 3. The global power spectrum ( ) with its the large scale orbit errors. We therefore seek signals
95% confidence interval, having a maximum wavelength of 1000 km. the char-

acteristic size of the focus area, and specify that the
power appearing at larger wavelengths is due to inea-

Fu spectrum is unclear, but may well be related to the surme i noise.
diffren freueny coten of he wo dtasts. surement noise.

different frequency content of the two datasets. We thus have specifically identified two distinct
Fu's spectrum reaches a white noise level at X, = 100 components of measurement noise, a shortwave com-

km. The power density of the white noise is close to
1.5 10 -2 m 2/cpkm corresponding to an average noise ponent iniied with te oriero a al-

leve ofabot 4cm. he EOST atimeer s sme-wave component identified with the orbit error. As al-
level of about 4 cm. The GEOSAT altimeter is some- ready noted above, the full observational spectrum is
what better with a white noise level of 2 to 3 cm for 1- acmlxoeivligamshrcwtrvpr

second averaging (Sailor and LeSchack 1987). With astatex er invtevide anmany mor Qanti-

the 3-second averaging we use, the noise level shouldQuanti-
tatively useful spectral estimates for these additional

be further reduced by a factor of 3. Accordingly. it errors are lacking. In view of the simplicity of our dv-
should have a power density close to 2 10 m 2/cpkm namical model, no attempt is made to model them

which is about a decade below the signal we obtain at explicitly. Rather. it is assmethe are implicitly ac-

X, = 40 km. counted for in the short- and long-wave noise com-

7. Determination of the measurement noise covariance ponents. Decompose the measurement noise covari-
ance as

Given (8), and assuming that the measurement
noise and the barotropic wave signal are not correlated,
the spatial autocovariance function of a sequence of
altimetric measurements can be written: where the subscripts .s and I denote the short- and long-

R,(-V,) = R,(.x,) + R(x,) (23) wave components of the covariance. The Fourier

where Rh and R, are the autocovariance functions of transform of( 25 ) yields a similar relation for the power
h, and q. R remains the measurement noise covariance spectral densities:
as defined in Eq. (12) and v, is now the spatial se7pa-
ration along track. Taking the Fourier transform of S(k,) S,(k,) + S( k,). (26)
(23) . one obtains the power density spectrum of the
measurements (.,,) as the spectrum of the signal (,,)
plus that of the measurement noise (S):

Sl,(k, ) S,,(k,) + S(k,). (24)

The spectrum 41 is our best estimate of Sj, k, remains
along-Irack wavcnumber. In the next three subsections , .

we show how to use this information to estimate the
noise spectrum S and the noise covariance R.

It 4 10 tO- TO
a. Noi.ws xolurce' WAVF NIIIBIER (CPKM)

The measurement noise is the sum of the measure- li. 4. s, a~numlxr pmxcr spectra trom high-cncrg rcgions

ment errors plus the fraction of the oceanic signal not Fu ( 1983. dotted line). i (solid line).
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b. Short-wave noise If the ratio ro/lo is kept constant but a smaller value

Here R, is taken to be of the form: of 1o is selected, the quality of the fit decreases. If one
uses larger values of 1o, larger values of the variance ro

R,(xv) = ro exp( - x,/ lo ) (27) are necessary and the additional power appears at long
wavelengths, a region where one wants to minimize

where ro is the variance of this short-wave noise and to the effect of the short-wave component of the noise.
its correlation length. The corresponding power spectral
density is c. Long-wave noise

S,(k,) + 2r0 /0  (28) One can think of the large-scale orbit error as a slowly
varying sine with a predominant wavelength compa-

At large wavenumbers, the first term of the denomi- rable to the Earth's circumference (about 40 000 km)
nator becomes negligible so that one obtains the power (e.g.. Wunsch and Zlotnicki 1984: Tai 1989). The
spectral density of a red noise with a -2 slope on a conventional way to eliminate this error is to approx-
log-log plot: imate it by a simple bias or a linear or quadratic or

more structured function (e.g.. Tai 1988) and then
logS,(k,) = log(ro/2r2 lo) - 2 logk,. (29) subtract it from the data (e.g., Thompson et al. 1983).

Using this linear expression' to fit (D at wavenumbers Unfortunately, this adjustment removes oceanic signal
larger than 6 X 10-2 cpkm one obtains the estimate: too-as we will demonstrate later. Hore we do not ex-

plicitly compute the orbit error. Instead, we filter it out
rol/o = 2 X 10 m 2 km . (30) on the basis of its spectral characteristics specified by

There is some freedom in choosing either r0 or /u. The R1, related intimately to the method used by Wunsch
choice 1o = 60 km implying r0 = 1.2 X 10-2 m2 (i.e., and Zlotnicki (1984). The variance of the orbit error
a rms variability of I I cm) is consistent with the sta- (r,) is close to I m 2 (Smith et al. 1987) and one expects

tistical properties of the mesoscale activity, even if the to have a correlation length (/) the order of 40 000
rms variability seems a bit small for a western boundary km and longer, depending upon how long orbit errors
region. Indeed, the Gulf Stream eddies have a surface persist. Also, the long-wave noise spectrum should
signature of about 40 cm (e.g.. Cheney and Marsh match 4) at the largest wavelengths. Interestingly, the
1981 ) but the eastern part of the selected domain is simple choice of a red noise:

considerably quieter and the tracks crossing this region R,(_\,) = r, exp( - I .,/ 1) (31)
have a smaller variability. The variance of the "me-
soscale noise" is meant to be an average over the whole with r, = 1.7 m2and1 = 40 000 km vields a spectrum
domain (spatially variable statistics can be employed with suitable power densities at long wavelengths (Fig.
if one wishes). 6). As a drawback to this choice, S, still has non-neg-

Because ro and I0 are chosen according to (30), a ligible power at short wavelengths and this interferes
good fit of 4) is obtained at short wavelengths (Fig. 5). with the previously computed short-wave noise spec-

trum. Therefore, to maintain the fit between 4) and S,
+ S, at short wavelengths, we (somewhat artificially)
decrease the variance of R, from 0.012 to 0.01 m2
(Fig. 6).

to

1,t9o km 8. Selection of the horizontal modes
60 km

The horizontal modes in the solution (2) must be

30km specified. From the dispersion relation for Rossby
waves, attention can be restricted to wavenumbers inthe left half-plane i.e..

70 k < 0 (32)

In all spectra presented here. the power densities corresponding

to 2 to negative wavenumbers have been added to their positive coun-
70-4 10-3 O-2 to-, terparts in such a way that the integral of the plotted densities over

WAVE NUMBER (CPKM) the positive wasenumbers exactly yields the variance of the signal.
Accordingly, the power densities appearing in 'I, (or an other spec-

H:1;. 5. The data spectrum +' (solid line) with red noise spectra trum) have ito be divided by two before being compared to theoretical
(dashed lines) computed according to (28) for different values of/, values like ( 25 ). Also, the theoretical values are multiplied b. 2 %hen
and a constant ratio ro/fo - 2 I0 ' m2 km . plotted.
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9. Numerical implementation

a. Initialization
tO V0'

The Kalman filter requires an initial value of the
s 's state estimate and its covariance matrix (14a, b). All

initial condition estimates are for an ocean at rest. i.e.
> too

4(010) = 0. (36)
N

Q In the complete absence of information, the error co-
N.5" variance of this initial estimate would be infinite. But

0\ even without altimeter data, such a state of complete
ignoranze is hardly realistic. Assuming that the state

estimates yield independent estimates of the wave
phases and amplitudes. (5b) yields

10-2 , , ,, '
,0-4 10-3 10-2 I 

-

JrAVE NUMBER (CPKM)

Fi. 6. The data spectrum ,P (solid line) comparcd with the spec- = +[q2,, j -- -, ] + E? - 2

ified short- and long-wave noise spectra (S, and S1. dashed lines) and
the global noise spectrum (S = S, + S1. dotted line). The spectra's =P2,,,- .2,, I + P,,,.2,m (37)
parameters are: ro = 0.01 m 2 , /, 60 km. r, 1.7 m , 1 - 40 000
km. Estimates of the wave amplitudes can thus be used to

set an upper bound on the variances of the state esti-

corresponding to waves with positive frequencies. Only mation errors. In the spectral region where we expect

waves in the range X, > 166 km are sought. Owing to Rossby waves ( 166 km - A -< 1000 kin). the variance

the curvature of the ground-track in the beta-plane, appearing in (D is 120 cm 2 above that of the specified

there is a difference between the wavelength measured measurement noise. If the entirety of that power was

along the track (A,) and the actual wavelength (X). equally distributed over the 32 wave modes. their vart-

However. in the small domain of current interest, this ance would be smaller than 4 cm 2 , i.e. the wave am-

difference is negligible ( 0.2> ). Therefore. the mini- plitudes would be smaller than 3 cm. Theretbre. a con-

mum wavelength constraint is easily expressed in terms servative assumption is that the initial variance of each

of(k. 1): state is no larger than P = 400 cm and

[k 2 + 12
]i/

2 < 27rmn. (33) P(010) I'd. (38)

Here Xmin = 166 km. Similarly, we do not expect to
estimate Rossby wave amplitudes for wavelengths
larger than Amax = 1000 k m. and select waves such that cyces /00 AOO M i)

[k 2 + /2] 1 /2 -- 2 7rkmx. (34) A,n /66km 6

Finally, since the mean trvcks have been computed a,,, /7 Odors

from data spanning a period p,,,, of 170 days. the wave
periods will be made shorter than this value. Using the *AMC, RN00Am

dispersion relation (3), this requirement implies: ... . .

2~2 + /2)....
< Pmax (35)-/k 5 ecycles AM,' Otr)

a relation indicating that acceptable wave vectors lie
within a circle of radius d = 0pnmax/(47r), with center
at (-d. 0). \

The constraints (32) to (35) define a locus (Fig. 7)
within which we select a limited number of wave vec-
tors: we take wavenumber vectors which are harmonics
of the basin scale of 1000 km. These 32 wave vectors
are represented by heavy dots in Fig. 7. Accordingly. lI(. 7. I ofthe suitable v"a'c kcctor, (shaded arc, includting
the state vector has 64 components. the 32 %ectors selected for sinulation, hea\, dots,
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b. Process noise 10. Preliminary experiment without process noise

In the absence of precise information about the noise In a preliminary experiment, hereafter referred to as
that directly perturbs the state, in the dynamical equa- "'Reference-32," filtering of the altimetric data is per-
tion (7), we will assume that the components of the formed in the absence of process noise Wa2 = 0). The
noise vector are uncorrelated, i.e. that the F matrix is filter starts from the initial conditions (36, 38 ) and is
diagonal: run with the 32 horizontal modes selected in section

r =21 (39) 8. The results will be described and interpreted in terms
of the estimated wave amplitudes and phases deduced

where the process noise variance a2 has still to be de- from (5a) and (5b).
termined. As shown in the previous section. one expects
average wave amplitudes of a few centimeters. To be a. Estimated wave amplitudes at/ u end oft/u' oh.wr-
able to detect such a signal with some confidence, we ration period
need amplitude estimates whose errors have standard Final estimates ofthe wave amplitudes and the stan-
deviations smaller than about I cm, a requirement set- dard deviation of the estimation error are presented in
ting an upper bound on the acceptable magnitude of the (k, 1) plane (Fig. 8). The amplitudes rarely exceed
the process noise. As will be seen, the Kalman filter I cm, It tlaest vle e obserd orcmal
used is stable and the variances of the amplitude errors v of in c the esimated ltdsmdo
reach quasi-steady values. These values can be com- notuex on sta ev the e rrore ie te

puted independently of the data from ( 16), (18) and
Such computations indicate that the standard are not significantly different from 0. Only 5 out of the(37).32 selected waves have a final amplitude larger than

deviation of the process noise cannot be larger than a
few millimeters if one wants to reach amplitude error one standard deviation and larger than I cm. These
variances as small as I cm2. waves will be referred to as WI to W5. Their wave-From a more physical point of view. the noise af- number vectors are listed In Table 1.

At first sight (Fig. 8b), the standard deviation isolinesfecting the state variables has to be comparable to theexitanarccursymr whfoalros
physical perturbations affecting the observed waves. ecreanen chr ouls ofth w a eor
The oceanic barotropic Rossby wave field can always decreasing when the modulus of the wave vector in-
be decomposed into a sum of free and forced modes. creases. In other words, the smallest error variances are
The present model explicitly contains only free modes
so that forcing should be regarded as a noise pertur- lengths. To explain that behavior, we consider an al-

bation. Consider modes generated by the surface wind ternative form of the Kalman filter. In this form, the
stress. Assuming that the stress is purely periodic with state estimate 4(k Ik) is obtained by combining the statefrequency wo, the amplitude of the wind-forced modes forecast 4(k Ik - I ) directly with the least-square es-

frqu ven by the litueftheind c m: timate of the state deduced from the data h(k). Each
(6a,,,) is given by (Longuet-Higgins 1965): of these state estimates is given a weight proportional

(f/pgII) curl( to the inverse of its error covariance matrix. These are
k k, + wo(k,?2 + I,2) (40) P '(klk - 1) and C1 (k)R '(k)C(k), respectively

(e.g., Liebelt 1967). The error covariance matrix of
wherefis the Coriolis parameter, p the sea-water den- the new estimate 4(k 1k) is obtained by combining these
sity, g the gravity, 1I the water depth and r the surface inverses as follows.
wind stress. This solution fails in the case when the
windstressisinresonancewithafreemode(w0 =w,,,). P(klk) [P '(klk - I)+ C(k)R '(k)C(k)]
Away from the resonance, Eq. (40) can be used to (41)
estimate typical values of ta,,. Assume a wave with
wavenumber (k, 1) = (-3, 0) cycles/10 3 km, an av- This equation is an alternative form of( 18) and can
erage value of the wind stress curl ( 10 7 N m 3), a be derived directly from Eqs. (17-19). The first term
water depth of 4000 m and typical middle latitude val- oi the right-hand side characterizes the information
ucs of f and 0. For very slow variations of the stress carried by the forecast state vector at time tA while the
(wo - 0). Eq. (40) yields amplitudes close to I mm. second term characterizes the inlbrmation brought into
For a more rapidly moving wind system with a char- the system by the new measurement made at this time.
acteristic period of a few days (wL 0  2 X 10 s ), The model forecast does not change the wave ampli-
the amplitudes are an order of magnitude smaller ( h ,, tudes and the process noise variance is the same for all

0. 1 m,, ). Therefore, it appears that a process noise waves. There is thus no mechanism in the model that
with a standard deviation of'order I mm (a 2  10 ' could explain why the error in some wave amplitudes
M2) can crudely represent wind-forced disturbances, decreases faster than for others. But the spatial distri-
(We are ignoring other possible sources of wave-driv- bution of the Ineasu'rements could permit better esti-
ing, for example, radiation from the Gulf Stream, e.g., mation of certain waves. To isolate such an effect we
Hogg 1988). consider the case where the model forecast has a very
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FIG. 8. Estimated wave amplitudes (in cm) after ten repeat cycles (a) and the standard deviation
of the estimation error (in cm) (b) for Reference-32 (r 2 0).

large error covariance (P' (k Ik - 1 ) - 0, in a suitable Indeed, a wave that is poorly estimated along an as-
matrix norm) so that (41) reduces to cending track will be much better estimated along a

P(kI k) =[CT(k) R-'(k)Ck) (42) descending one and vice versa. Thus, on average, little
angular anomaly should appear. In our dataset how-

This matrix can be evaluated for a simple model with ever, about two-thirds of the tracks are ascending ones
a single wave mode and two data points on a track, at so that the waves having crests (nearly) parallel to these
X, and X2 . Accordingto (25), (27) and (31 ), R1  = R22  tracks should still have relatively large amplitude errors.
and R12 > 0. Then using (10a), (37) and (42). one These waves have their wave vectors along the line v
obtains after some algebra = x/2 and. indeed, one observes in Fig. 8b that this

line roughly corresponds to the axis of a high standard

PR -2 2 (cos(K.AX) deviation ridge.
sin (K.AX) Finally, it should be mentioned that all ofidiagonal

terms of the state error covariance matrix are at least
where K and a are the wave vector and amplitude of one order of magnitude smaller than the diagonal
the model's single mode, and AX X, - X,. This terms. indicating that the state estimates are essentially
vector is parallel to the track and its length is typically independent.
20 km. the distance between two successive 3-second
average measurements of the GEOSAT altimeter. All 1 Tie Ctio off/i amp/itidh ad phases
waves of interest have wavelengths considerably larger
than 20 km so that K and AX are always at a rather Restrict attention now to tie dominant waves WI
small angle with a maximum value near 35' . In most to W5. The estimates, shown in Fig. 9, first exhibit a
cases, the angle is only a few degrees. For such small large variability before progressively stabilizing. During
angles, (43) indicates that P,, is a decreasing function that initial period, the state error variances decrease
of I K" AXI and with IAXI fixed, P,, is a decreasing very rapidly (Fig. 10). After about 40 days, tie esti-
function of 1K! as observed. The scalar product K. AX mated amplitudes and phases become less variable
also depends on the angle between K and A X. When while the error variances keep decreasing, though very
K is perpendicular to AX (i.e. when the wave crests slowly. The estimated phases of WI and W2 become
are parallel to the track), the scalar product is zero and nearly constant while tie phases ofW4 and W5 exhibit
P,, becomes infinite. In reality, this angular effect is a slow, almost linear increase. The amplitudes of these
considerably attenuated by the presence of ascending two waves are quite stable after day 60. On the other
and descending tracks that are far from being parallel, hand, the amplitude of W I drops by about I cm be-
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TABLE I. The five waves which are found to carry a significant remembered that, strictly speaking, the homogeneous
amount of energy and are simultaneously consistent with both dat wave model is only valid for Rossby waves of constant
and model.waemdlionyvldfrRsbwaeofcstt
and__model,_ amplitude. In section 11. the response of the model to

Wave vector Period deviations from those specifications is analyzed. This
Wave (cycles/lO00 km) (days) analysis proves to be useful in explaining some of the

features observed in Fig. 9.
Wl (-3,0) 77.1
W2 (-2.3) 167.0
W3 (-2, -1) 64.2 c. Explained variance
W4 (-I, -1) 51.4
W5 (-1, -2) 128.4 The present simple model is not expected to explain

a large fraction of the surface variabilit%. A perfect
model would explain all of the obserxed variance not

tmeen day 60 and day 80 and the amplitude of W3 due to noise, about 120 cm 2 (see Fig. 6). To quantify
exhibits a slow trend towards decreasing values, the performance of the present model, define the re-
Though none of these changes is drastic, it should be sidual signal after time-update as
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FI(;. 9. Evolution of the estimated amplitudes andi phases ol the h'.e domimani 11odes in
Reference-32. The values shown are those Obtained at-ter each mcsrmn~ th . I fie time
origin (day 0) is 24 March 1987-



L;ECEMBER 1989 PHILIPPE GASPAR AND CARL WUNSCH 1833

10-f transient of smaller amplitude during the first repeat

cycle. Only minor differences subsist after that.

10-2 During the nine last repeat cycles, the measurement-
update process is always effective in explaining some
variance. The difference ' ,, - keeps values be-

10 3 tween 10 and 30 cm 2 , the mean being 18 cm 2 . The
performance of the model's forecast, as measured by

0 the difference V - ,,, oscillates between positive and
- o .... negative values, the average over the nine last repeat

cycles being negative (-9 cm 2 ), indicating that the
model forecast propagates more noise than informa-

o 5 0 40 .0 tion. We suspect that most of this noise is carried by
/).4)'.; the 27 nonsignificant modes. To test that hypothesis,

we performed a new experiment (Reference-5) in
Fio. 10. Evolution of the largesi state error which only the five dominant modes are retained invariance in Reference-32. temdl

the model.

A first interesting result from this experiment is that
the estimated phase and amplitude of the waves are

n,, = t, - il(kjk - 1) almost identical to those obtained in Reference-32.
where hi is any altimetric measurement made at time During the last repeat cycle, the differences between
tK and j (kIk - I ) is the Rossby wave signal at the Reference-32 and Reference-5 are smaller than 1 mm
measurement location deduced from the predicted state for the amplitudes and 30 for the phases. This result
estimate 4( k I k - I ). Similarly, the residual signal after is consistent with the fact that all state estimates, are
the measurements are included in the update is essentially independent.

The differences V - IV,,, and I'M - Im,, still exhibit
n ..... = h1 -- (klk). a transient behavior during the first repeat cycle. The

Denote the variances of h, n,,, and n,,, by V, I ,, and average values of V" - ,111 - I ,, and IV- I ;,,, over
I ... The difference V- I',,,, is the variance explained the last nine repeat cycles are now 4, 3 and 7 cm 2,
by the model data combination made by the Kalman respectively. The model/data combination explains
filter. This quantity can be split in two parts: ' - ' only 6 . of the total observed variance. Compared with
the variance explained by the model forecast alone. Reference-32, the variance explained by the time-up-
and I',, - I,.. the variance explained by the mea- date is better (at least, it explains some variance) and
surement update, i.e. the variance explained by the that of the measurement update is worse. The inca-
observations when combined with the forecast. surement-update process consists of adjusting each

In Fig. II. the means of these quantities are presented
for each repeat cycle. A large transient is observed dur-
ing the first repeat cycle. During this cycle, the model 40

forecast is very poor-as shown by the negative value 400
of V - IV,. On the other hand, the measurement-up- Z"
date step is very efficient in correcting the forecast. '?00
What happens during this first cycle is that the mea-
surement-update process drives the state estimate to 2 200

tit the data, track by track, using the available hori-
zontal modes. As shown in the previous section, the 100
estimated amplitudes and phases are highly variable.
The forecast has little weight because ofthe large value - -1

of the initial state error variance, so that the Rossby . -
wave physics play a minor role in the state estimate.
Accordingly, each measurement-update step is very ef- tO0

ficient in explaining the variance along each individual
track but the forecast along the next track is of poor : .,oo
quality. As progressively more data are included, the
state error variance decreases very rapidly (Fig. 10). 0))

and the forecast gains more weight. The state estimates ... . .
and the values of the explained variances eventually ,9 10 11 1,, 1.? 1. 15 , 6 C 17 I

stabilize. Some numerical experiments (no, shown /', ,I , /, ,
here) were performed with reduced values ofthe initial 1I2 . II. Mean values of I V,, (dotted line). V", 1 I (dashed
state error covariance po. As expected, they exhibit a line)and I' ',,,(solid line) foreach repeat cycle of Reference-32.



1834 JOURNAL OF PHYSICAL OCEANOGRAPHY VOLUME 19

forecast state to obtain a "best fit" of the data. Unsur- by the Kalman filter at the final time IN. This result is
prisingly, a better fit can be obtained using 32 adjustable simple, but not robust, as it heavily relies on the un-
modes rather than 5. In addition, it is now clear that realistic assumption that the system dynamics are noise
the 27 non-significant modes of Reference-32 are used free. Even in the absence of driving noise, one expects
to fit noise rather than Rossby waves. The propagation the dynamical model equation (7) to be an incomplete
of these noisy modes according to the governing equa- description of the Rossby wave physics so that sub-
tion of the Rossby waves acts as an additional noise stantial deviations from that simple evolution law can
source that actually damages the forecast performance. occur. Unlike the filter, which accommodates itself to

successive observations, the smoother (45) is unable
d. Smoothing to track such deviations because the model is tempo-

process noise rally stationary.
Optimal smoethinguing the absence of ne ois: In spite of this, it is still interesting to run the

is a special case. Introducing(16)into(22)oneobtains: smoother, at least to determine how much of the ob-

Gs(k) = A-(k) (44) served variance can be explained by a few barotropic
Rossby waves with constant amplitude. A smoothed

so that (20) and (21) reduce to estimate was thus made using only the five most sig-

j(kI N) = A- (k)4(k + I I N) (45) nificant wave modes identified by the filter. As for the
filter, we define n, the residual signal after smoothing

P(kI N) = A-'(k)P(k + 11 N)A-T(k). (46) [n, = hi - j(kj N)] and I's the variance of n. The

Equation (45) indicates that the optimal smoothed variance explained by the smoother is V - V,. This
state estimate is simply obtained by integrating the dy- difference does not exhibit a transient behavior as ob-namical equation (7) backwards in time from the final served with the filter because smoothing starts fromfiltered estimate ((NI N). The reason the backwards the best filtered estimate 4(N I N). On average over thefiterdtiiomat is N).heay son n erst kwan nd, whole dataset, the variance explained by the smoother
the final filtered state estimate 4( N N) is known to is 4.5 cm2, a satisfying result as this variance is almost

have a smaller error covariance matrix than all previous exactly equal to the variance of the five smoothed
filtered estimates (see Fig. 10). In addition, the state waves.

is assumed to evolve in a strictly deterministic manner
because no noise is present in the state equation. II. Sensitivity experiments
Therefore, the backward integration of that perfectly
deterministic model from the final, best estimated, state Although the model only explains a very small frac-
should provide the best possible state estimates at all tion of the variance of the altimetric signal, it does
times. More generally, Fraser (1967) showed that the succeed in identAtving a few Rossby waves whose am-
optimal smoothed estimate of the state is better than plitudes appear to be significantly different from zero.
the estimate obtained with the backwards integration Can we trust the estimated phases and amplitudes of
technique only for those states which are controllable these waves-as we know that the design of the linear
by the process noise (see also Gelb 1973). In the ab- wave model and the corresponding Kalman filter is
sence of process noise, none of the state components based on several crude assumptions? More specifically.
is controllable by that noise. The stability of the matrix we would like to answer the following questions:
inversion in (44, 45) will be sensitive to small system I ) A crude description of the measurement noise is
eigenvalues, and can be dealt with in a number of con- used (see section 6) and the data distribution in space/
ventional ways. ed i

Further simplifications arise with the present dy- time is very irregular. Are the resulting wave parameter
" estimates reliable":

namical model. The state-transition matrix A is a ro- esTi e riber
tation matrix and is therefore orthogonal (A = A' ). 2) The orbit error is not directly corrected in the
As a consequence, (6a) and (45) yield data but rather removed by liltering. Would a direct

correction yield better results'?
,,,(k I N) = Y,,,( A'I A) (47) 3) The wave model is formulated fbr waves of con-

stant amplitude while observed waves do grow or dcca..
0i,,,(kI N) = ..,(NI N) (48) Are the state estimates reliable when the amplitudes

while (37) and (46) give vary?
4) The frequencies of the waves are determined by

Efa,,,(k) - &,,(kI N)] 2  E[,,( A') - A)( N 1I-2. the simple dispersion relation (3). Departures from
(49) these theoretical values are likely. How do they affect

the estimated phases and amplitudes?
Thus, the optimal smoother yields wave estimates hav- 5) The preliminary experiment was performed
ing an amplitude, initial phase and amplitude error without process noise. How sensitive are the results to
variance that are constant and equal to those provided that noise? Questions 5 and 3 are directly connected.



DECEMBER 1989 PHILIPPE GASPAR AND CARL WUNSCH 1835

To answer these questions, one would prefer to corn- typical of the dominant modes found in the preliminary
pare the estimated phase and amplitudes of some waves experiment. Tho amplitude and phase of the added
with their known values, wave retrieved according to (51 ) is shown in Fig. 12.

Consider ( I ). The characteristics of the Rossby for the case with no process noise. The result is very
waves present in the altimetric data are not known a satisfying. After 3 days, the estimation error is already
priori so that a direct evaluation of the results is im- smaller than I mm for the amplitude and smaller than
possible. However, a known signal associated with a 1 for the phase. Similar experiments were repeated
specified Rossby wave can be added to the altimetric for different values of the process noise variance (0
data and then (perhaps) retrieved using the filter or < a2__ 10 1 M 2 ) and for different added waves having
the smoother. To this end, the wave vector of the added amplitudes as small as 0.5 cm. The results obtained,
wave is chosen from among the 32-wave basis set. De- for both the filtered and the smoothed estimates, are
note the wavenumber and corresponding frequency by of the same quality as those shown in Fig. 12. Signif-
K and w. Choosing an amplitude (c,) and an initial icant differences between the smoothed and the filtered
phase (fl), we compute the surface signal associated estimates appear only during the very first days when
with that wave, a, sin(K. X - wt + 0,), sample it the filtered estimates are not yet stabilized. This clearly
along the tracks and add it to the GEOSAT data. We shows that, in spite of the unusual sampling distribution
call this sum the "augmented dataset." In that set. the of the altimetric data, the optimal filter and smoother
total signal corresponding to the specified wave vector ar able to accurately identify Rossby waves having
is (constant) amplitudes as small as, or even smaller than.
asin (K X- wt + 0) =a,,sin (KX- w + 0,) cm.

It is important to point out that we do not see here
+ a sin(K. X - wt + 0,,) (50) the large initial variability of the estimated amplitudes

or phases that we saw in the results of the preliminarywhere ta and tOd are the amplitude and phase of' the experiment (Fig. 9) because the effects of the mea-

Rossby wave signal already present in the original al- eurment noie ar e tly eoe f the rel
timtri daa. I Iering smothng f te oigial ndsurement noise are implicitly removed from the results

timetric data. Filtering/smoothing of the original and shown in Fig. 12. Indeed, when estimating the char-
augmented datasets provides estimates of the original acteristics of the added waves, we compute the differ-
and total Rossby wave signals, respectively. By taking ence between the signal estimated from the original
the difference between these two signals for the specified altimetric data and the signal estimated from an aug-
wave vector, one obtains the estimate of the added wave mented dataset. The noise is the same in the two sets

signal. Applying (50) to the estimated signals. basic so that it disappears when the difference is taken. In
trigonometric relations yield: fact, Fig. 9 indicates that the filter may need several

-a,2 = (i sini) - Yj sinba) 2 + ( cos0 -_ Y, coskd) 2  weeks worth of data to eliminate most of the noise.
Figure 12 shows that the Rossby wave signal itself is

sink, = (& sint - Y; sinkd)/ra, rapidly obtained in the state estimates. That result is
S=(a - 5)only weakly sensitive to the specified variance of the

sY,, =( I cos0 - ,loshj)/(,,. (1) mcasurement noise as revealed by additional tests (not

The comparison of these estimates with the known shown here) in which the variances of the short and
characteristics of the added wave directly informs us long wave measurement noises were doubled and
about th, performance of the filter/smoother, halved. Equation (41) shows that the variance of the

Each of the experiments with added waves requires estimator error is directly affected by a change in the
two simulations: a reference simulation with the orig- measurement noise level: nonetheless, it appears (as is
inal altimetric dataset and another one with the aug- usually the case in this type of problem). that the signal
mented dataset. All experiments have been repeated so estimated is much less sensitive than its formal error.
for diffierent values of the process noise variance. For
a

2 = 0. Reference-32 serves as the reference simulation. I. I[lf'ct ofthe orbil error correction
Similar reference simulations were done with ditficrent
values of a 2 . Smoothing was performed only for a- By specifying a long-wave measurement noise rep-
:# 0. The results of the experiments with nonzero pro- resenting the orbit errors, we avoid using an explicit
cess noise will be discussed at length in section 12. correction scheme. The results of the previous section
Here we concentrate exclusively on the results obtained indicate that this procedure provides excellent estimates
for the added waves. of a constant Rossby wave signal. Nevertheless. it is

interesting to evaluate the performance of the usual

a, Wl(ave% with cotslant a/ilev correction technique that consist of removing the bias
and tilt of the tracks. To this end, we repeat the ex-

In a first experiment, the added wave has a constant periment described in the previous section, the only
amplitude of 2 cm and a phase of 270'. Its wave vector diffierence being that the bias and tilts are subtracted
is (-2, - I ) cycles/ 10- km. The chosen amplitude is from all tracks and that r, is taken equal to zero to
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FIG. 12. Estimated amplitude and phase of an added wave with a specified
constant amplitude of 2 cm and a phase of 2700.

indicate that there is no long-wave noise left. The results c. I'Vaves with variable amplitudes
obtained for a 2 = 0 are shown in Fig. 13. Other ex-
periments performed with nonzero values of a2 yield Real Rossby waves are likely to deviate from the
similar results. The retrieved amplitude of the added simple evolution equation ( I ). In particular, we expect
wave is close to I cm, that is only 50% of the exact their amplitudes to vary with time. In the following set
signal. The phase estimate is quite good, with an error of experiments, we examine the ability of the filter and
smaller than 20. The added wave we used is somewhat smoother to estimate waves with changing amplitudes.
special as its crests are (almost) parallel to the ascending The simulations are performed with an added wave
tracks, so that by subtracting the bias of the ascending whose amplitude first takes a constant value of 2 cm
tracks, the signal associated with this wave is sup- during 60 days. Then, on day 60. the amplitude is
pressed. The characteristics of this wave can thus only abruptly decreased to 1 cm, a value that is maintained
be inferred from the descending tracks which represent through the rest of the experiment. The phase keeps a
only one third of the data. In fact, among all selected constant value of 270' and the wave vector is (-2, 0)
waves, this one is most affected by the orbit error cor- cycles/ l0' km. The estimated amplitude of the added
rection. Nevertheless, the results shown in Fig. 13 are wave is shown in Fig. 14 for three different experiments
not exceptional. Experiments performed with other with a = 0, 10- 6 and 10- 4 M2. respectively. The esti-
added waves yield amplitudes that are typically un- mated phase is not shown as its error is smaller than
derestimated by 20% to 40%. In general, the worse es- 10 in all experiments.
timates are obtained for the waves having the largest In the absence of process noise (Fig. 14a), the esti-
along-track wavelengths. Indeed, these long waves mated amplitude reacts rather slowly to the change,
contribute significantly to the bias and slope of the with an e-folding time of about 70 days. The slowness
tracks so that their signal is substantially altered by the of the response is essentially due to the fact that, in the
bias and slope removal, justifying the earlier comment absence of process noise, the state error covaria
(section 7c) that direct orbit error removal procedures matrix becomes rapidly very small (see Fig. 10) so tha,.
may be inadvisable (at least on this spatial scale). in the measurement-update step, the state forecast is

2.2 350

2.0 300

1.6 -' 250

1.4 - 200
1.2 - 00~12 1.00

3! 0.8 100
0,6 -50

f4 I i . I 1, . o ' l i
0 40 80 120 160 0 40 80 120 160

DAYS DA YS

Fio. 13. As in Fig. 12 but the estimates have been made after
removal of the bias and tilt of the tracks.
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3.0 d. Waves with perturbed frequencies

"N 2 5 -CT 0 The frequencies of Rossby waves in the ocean are

S0 likely to differ somewhat from the theoretical values
given by (3). Altimetric data also contain many wave-

1like motions that are not of the Rossby type. Some of
Ethese undoubtedly have wavenumber vectors among

1.0 the selected ones, but their frequencies do not obey
(3). In this section, we analyze how the filter and

0.5 (0to) smoother react in the presence of waves whose fre-
0.0 1I , quencies deviate from the dispersion relation (3)-

0 40 80 120 160 i.e., "non-Rossby waves."
Several experiments were performed with added

3.0 waves having a perturbed frequency. These waves are
of the form"2 .5 O-- O-m

a, sin[K.X-(w+tw')t+ 0 ]. (52)2. 0
2 . .. The optimal filter and smoother try to identify these
1.5 " waves under the form
1. -a sin[K. X -wot + b (53)

0.5 (b) which means that the estimated phase should ideally
O.OL Ievolve like

0.0 = o t. (54)
0 40 80 120 160 ba = Oa

3.0 Two series of experiments were performed with w'
"-, 5-"4 m2 = -0.1 w and w' = 0.5w. The first case is representative

-25 - LT.? /of Rossby waves with rather small frequency pertur-

2. bations. The second is more typical of waves that are-2.0 ,
not of the Rossby type. In all experiments, the added

1.5 - wave has a constant amplitude of 2 cm, an initial phase
t-- of 270' and its wave vector is ( -2, 0) cycles/ 10' km.

1.0 ,-,- Here again, the experiments were performed for three
0 ~.5 (c) different values of T.The results for w' 0.5w are shown in Fig. 15. Be-
0.0 . . . . . . . ' cause this added wave is far from the Rossby type. we

0 40 80 120 160 would like to see its signal filtered out. For a2 = 0 (Fig.
DAYS 15a), this signal is effectively eliminated as the esti-

mated amplitude goes to zero with damped oscillationsFIG. 14. Estimated amplitude ofan added wave with varying am- of period 2ir/wo' (here. 103 days). This period is the
plitude for three different values of the process noise variance (at). ime eedd by the addedae t c reat a p he
The filtered (solid line) and smoothed (dashed line) estimates are time needed by the added wave to create a phase dif-
presented together. The exact value of the amplitude is 2 cm from ference of 2r relative to the wave with the exact Rossby
day 0 to 60 and I cm afterwards. wave frequency. The estimated phase exhibits well-

marked discontinuities occurring with the same period.
Between these jumps, the phase decreases almost lin-

given a very large weight relative to the observations, early at a rate smaller than predicted by (54). Estimates
Since the state forecast maintains the amplitude con- of the other waves present are insensitive to the pres-
stant, it takes a long time for the successive measure- ence of the added wave.
ment-updates to bring the estimate back to the observed For a2 = 10 -6 m 2, filtering is less efficient in elim-
value. When process noise is present, the state error inating the signal of the added wave. The smoother
covariance decreases less rapidly as the process noise clearly performs better as it succeeds in eliminating as
covariance is systematically added to it (16). Accord- much as 85% of the unwanted signal in the middle of
ingly, the state forecast is given less weight relative to the observation period. The observed response of the
the data so that the filter reacts more quickly to changes smoother is consistent with the usual property that, for
in the observations (Fig. 14b, c). For similar reasons, fixed interval-smoothing, the error covariance of the
the response ofthe smoother is faster when o increases. state is minimum near the middle of the observation
The response of the smoother is always less abrupt than interval and maximum at the end points (see the ex-
that of the filter, ample in Fig. 18). The estimated phase evolves almost
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FiG. 15. Estimated amplitude and phase of an added wave with a frequency perturbation W' = 0.5'e.
The results are shown for three different values of'a". The filtered estimate is the solid line. The smoothed
estimate is the dashed line.

linearly as predicted by (54) though the rate of decrease fits of the spatial modes to the observations uncon-
is slightly less than w'. strained by the dynamics. These results are analogous

For a2 = 10 4 M 2 , neither the filter nor the smoother to those obtained in the previous section.
eliminate a significant fraction of the unwanted signal. The results obtained for w'= -0. I w are qualitatively
In fact, that signal is almost perfectly estimated as the the same as those we have just discussed. The major
retrieved amplitude is correct within I mm and the difference is that the characteristic period 2r/l'l is
phase closely follows (54). By increasing the variance considerably longer (515 days) so that, for all values
of the process noise, one decreases the weight given to of a 2 , the estimated amplitude of the added wave de-
the model forecast in the measurement-update process. creases more slowly than shown in Fig. 15. For aT- = 0,
Accordingly, the dynamical constraint ( I ) is less strictly the final amplitude estimate is still 1.7 cm. For 7 -
enforced and henc, less efficient in filtering out the = 10 1 M2 , the smallest smoothed estimate is 1.8 cm.
"non-Rossby" waves. For a process noise as large as However, the presence of a wave with a perturbed fre-
10 -4 r 2 the state estimates are essentially least-square quency is clearly indicated by the phase estimate which
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exhibits a well-marked linear trend. In this case, the a. Amplitudes and their estimation errors in the (k. 1)
estimated phase changcs by more than 900 during the plane
observation period. The results of these sensitivity ex- The filtered amplitudes at the end of the observation
periments will be very useful for the interpretation ofthe results presented in the next section. period are presented in Fig. 16a. They are larger than

in the preliminary experiment (compare with Fig. 8a)

but their distribution is similar. Large values appear
12. Standard experiment with process noise mainly in the leftmost part of the domain, the largest

being in the vicinity of(- 1, -2) cycles/ 103 km. The
We now turn to the standard experiment (Standard- standard deviations of the estimation errors are shown

32) performed with the 32 selected wave modes and a in Fig. 16b. As in Fig. 8b, the error variance decreases
process noise with variance a2 = 10 -6 m2 . As indicated for increasing values of the wave vector modulus and
in section 9b. this value of the process noise variance a ridge of relatively higher values is present along the
is typical of wind-forced wave perturbations and is ad- line y = x/2. Notice however that at short wavelengths,
equate for numerical purposes. The results of the sen- the standard deviations of the estimation errors are as
sitivity experiments also show that such a variance is small as 0.3 cm in Reference-32. Here they are close
a reasonable compromise between very small values to I cm z nd the filter cannot achieve a better accuracy.
that give an exaggerated weight to the model forecast the limiting factor being the process noise.
and larger values that almost completely relax the dy- The smoothed amplitude estimates at the beginning
namical constraint. of the observation period are shown in Fig. 17. They

Because computational load is perhaps the major are quite different from the final estimates displayed
issue in the practical application of methods such as in Fig. 16a. The variability of the wave amplitudes will
the ones we are using, it is worth noting the amount be discussed in the next section. The standard devia-
of computer time requ.red in this standard case. The tions for the smoothed estimates are almost identical
entire filtering-smoothing computation, run without to those shown in Fig. 16b. This accuracy represents
any serious attempt at numerical optimization, re- the best attainable for the initial state with the available
quired about six hours on a SUN-360 workstation. Ex- datasel. Other. later states however are better estimated.
ecution time is dominated by the matrix inversions in Indeed, Fig. 18 shows that the smoother yields the
( 19) and (22) and there are many ways to make these smallest error variances near the middle of the obser-
more efficient. vation interval. These variances are about a factor of

4 - - -1_______ __ 4,
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0 /

2- 2
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0 0

3

4 . . .. . -- _ .. . .. . . . ..
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k (' 1'. 000 KM) k (yclcs ( 0 ,d f)

FIG. 16. Final filtered wave amplitudes in cm. (a) and the standard deuialions (in ems) of the
estimation errors (b) for Standard-32 (a' 2 10 " m
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4 ence-32. Indeed, the amplitude estimates exhibit larger
variations in Standard-32 than in Reference-32. Some

3 waves maintain significant amplitudes for extended
periods of time but then decay below the significance

/ -limit, and eventually grow again (real wave amplitudes
.2 . are more likely to be variable than constant). Nine

waves sustain smoothed amplitudes larger than one
standard deviation or 1 cm (whichever is the largest)
for more than 50 consecutive days. The five dominant

C) :waves identified in Reference-32 are among those. The
(1 :evolution of their estimated phases and amplitudes is

shown in Fig. 19. The smoothed estimates for both the
phases and the amplitudes do not exhibit the small
short-term fluctuations observed in the filtered esti-
mates. The filtered and smoothed estimates of large
amplitude changes are in good agreement when ,hese
changes are slow enough. Such is typically the case for
W2. When the changes are more rapid (e.g.. see W5
around day 140) the response of the smoother is less
abrupt than that of the filter, as we noticed in the sen-
sitivity experiments.

.. . . Comparing Figs. 9 and 19. we clearly see that. when
-7 ; 6 " 5 1 a2 = 0 (Reference-32), most amplitude variations are

k (cycles, 100) A'M) strongly damped, in accordance with the results of the
FIG. 17. Estimates of the initial wave amplitudes (cms) sensitivity experiments. Here again, a typical example

given by the smoother for Standard-32. is the large amplitude increase of W5 near day 140 that
is barely noticeable in Reference-32. When the phase
estimates are stable and the amplitudes significant, all

two smaller than at the end points of the observation phase estimates (filtered with a2 = 0, filtered and
interval. Going backwards from the final filtered esti- smoothed with aI = 10-1 i n) are nearly coincident
mate, we observe that the smoother needs about 50 (for example. see W3 before day 100). When the phases
days to reduce the error variance to a (nearly) mini- exhibit a trend, the rate of change is larger for the
mum value that stays almost unchanged until it finally estimates obtained with a2 = 10- in 2 than for those
grows again during the last 50 days. This time scale obtained with a = 0 (see W3 after day 100, W4 and
suggests that state estimates with the smallest possible
error variances can be obtained with less data than we
used. For example, it is sufficient to filter the data over 4 5
about 100 days and then smooth backwards during 50
days to obtain a state estimate with nearly the smallest 4 0
possible error variance (see Fig. 18). In general, min-
imum variance estimates can be obtained by smoothing 3 5
over about 50 days, starting from any filtered estimate
after day 100. That type of smoothing systematically '? 0
applied over the same length of time is called fixed-lag
smoothing. Efficient algorithms exist to perform that 2
task (see Anderson and Moore 1979). Figure 18 also
shows that an estimate of the initial state, as good as 0
the one presented in Fig. 17, is obtained by filtering
over the first 100 days and then smoothing backwards 1 5
to the initial time.

r0

b. Time evolution of the amplitudes and phases
0 5

As in Reference-32, the estimated (both filtered and 0 o PC Io ,I(?
smoothed) amplitudes ol most waves do not exceed "* '

one standard deviation of the error. They typically os- FIG. 18. IEvolution of the largest amplitude error variance in Stan-
ciliate between 0 and I cm. However, the identification dard-32 for the filter (solid line) and the smoother, smoothing being
of dominant modes is not as easy as it was for Refer- performed from day 100 (dotted line) or da. 170 (dashed line).
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FIG. 19. Evolution of the estimaed amplitudes and phases oft he i c dominant modes in Standard-32.
The filtered estimate is the solid line. The smoothed estimate is the dashed line.
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W5). For W4 and W5 the trend of the smoothed phases 20

is positive throughout the observation period. Accord-
ing to (54), this result indicates that the frequency per- 18,

turbation w' is negative (i.e. the observed waves have
longer periods than the corresponding Rossby waves). 16 '

The estimates of I o'l deduced from the rate of change
of the smoothed phases of W4 and W5 represent " 14

roughly 10% and 30%, respectively, of the correspond- -

ing Rossby wave frequencies. The sensitivity experi- E 12

ments show that with a2 = 106 i 2 , the rate of change o

of the smoothed phase is somewhat smaller than the 10
actual value of I cd'[. Therefore, the values of w'l stated , - -

above are probably slight underestimates.
PV

c. Explained variance H

As in Reference-32, the variance explained by the .1 -

time-update is negative on average over the nine last
repeat cycles (- 12 cm 2 ). Similarly, the results improve 2
when the model is reduced to the five dominant modes
(W I to W 5). In that case, (Standard-5) the average __--- _______. ...... . ...... ......

values of V- V,, and V,,, - V,,are both 9 cm 2 . The 0 10-7 10-6 10-5 10-4

total V - V, represents 15% of the 120 cm 2 to be 'roccss noise variance (mn2 )

explained. On average over the whole dataset, the vari- FIG. 20. Evolution of the variance explained by the time-update
ance explained by the smoother is 7 cm 2. (solid line), the measurement-update (dashed line) and the smoother

Compared with Reference-5, the variances explained (dotted line) as a function of the specified process noise variance o.

in Standard-5 by the forecast, the measurement-update
and the smoother are about doubled. Additional ex-
periments were thus performed with the reduced model of a 2 in that range while the variance explained by the
to determine if it was possible to further increase the measurements update increases rapidly. The two effects
explained variances by tuning the value of the process compensate until a 2 is large enough (-_5 X 10 -6 M2 )
noise variance. The results are summarized in Fig. 20. for the dynamical constraint to become almost inef-
When ur2 increases, the dynamical constraint is pro- fective. Then, the smoother essentially behaves like the
gressively relaxed so that the available wave modes can measurement-update. In summation, it appears that
be more easily adjusted to fit the data during the mea- the choice a 2 = 106 in 2, that maximizes the variance
surement-update step. Accordingly, we observe that the explained by the model forecast, is appropriate for both
variance explained by the measurement-update is an the filter and the smoother.
increasing function of a 2 . The variance explained by
the forecast (time-update) first increases with a2 to 13. Summary and final discussion
reach a maximum at about a 2 = 1() - 6 M2 . Then, it
decreases rapidly and becomes negative for a2 > 2 GEOSAT altimeter data from the western North
X 10 i M 2 . Interestingly, the value of a2 that maxi- Atlantic have been processed for the period 24 March
mizes the variance explained by the model forecast is to 9 September 1987. The mesoscale variability essen-
typical of wind-forced perturbations (section 9b). For tially appears as a red noise (spectral slope close to -2)
smaller values of the process noise variance the data at wavelengths shorter than 166 km.
have a too small weight compared to the forecast so These altimetric data are combined with a simple
that they cannot correct for the defects of the model, linear barotropic Rossby wave model using optimal
For larger values, the dynamical constraint is not given estimation techniques such as Kalman filtering and
enough weight so that little noise is filtered out. The fixed-intcrval smoothing. The data are essentially used
noise is then propagated with the phase speed of the as a large-scale constraint, the mesoscale signal being
Rossby waves and this very rapidly reduces the forecast treated as a measurement noise. Though the model is
performance. As shown by (20). the smoother com- primitive, it does permit us to pose the following ques-
hines the state estimates ofthe time and measurements tion: "is there any fraction of the oceanic variability
update with the previous smoothed estimate. As for in the northwest Atlantic which is consistent with linear
the time and measurement update, the variance ex- barotropic Rossby waves?". By "consistent." we mean
plained by the smoother first increases with a2 and that the observed variability so described is indistin-
then stabilizes for 2 X 10 1 m 2 _, a 2 _< 5 x 10 6 in 2 . guishable from what the dynamical equation ( I ) de-
The forecast starts deteriorating for the largest values mands. In the present case. the answer is "yes" that a
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small fraction of the surface signal to be explained The model employed is extremely primitive, and
(about 6% to 15%, depending on the estimator used) one can argue that its use was misguided. Indeed, a
appears to be this type of mode-a result of some in- referee has suggested that we should have run the ex-
terest. periments described here again, with the sign of j3 re-

The model only explains a small fraction of the sur- versed, on the grounds that we might explain more
face variability, but succeeds in identifying a few sig- data variance than the small amount we do account
nificant barotropic Rossby modes with amplitudes of for. Given that the focus region includes the Gulf
a few centimeters. To estimate these waves, we do not Stream, and is probably energetically dominated by
correct explicitly for the orbit error in the data but Gulf Stream meanders moving eastward, such a sup-
simply consider it as a long-wavelength measurement position may indeed be correct. We do not think that
noise. Sensitivity experiments show that, using that much would be proven by such a demonstration, how-
technique, Rossby waves with constant amplitudes are ever. The more interesting questions are raised by
almost perfectly estimated. Instead, using the wide- models such as the present one which fail to agree with
spread "bias and tilt removal technique" to correct for the observations. No oceanic model is ever likely to be
the orbit errors, one can eliminate as much as 50% of in complete accord with the data, and one must inter-
the oceanic signal associated with some Rossby modes. pret the failure. In the present case, we have shown

The model itself has some process noise. The prob- quantitatively that a measurable fraction of the appar-
lem of specifying the variance of that noise a2 covers ent oceanic motions are consistent with linear baro-
many aspects that have been analyzed in different ex- tropic Rossby waves. We would be the first to agree
periments. When a very small a2 is chosen the esti- that this consistency is not the same as a proof that the
mators (filter or smoother) give a large weight to the motions are barotropic Rossby waves. But consistency
model estimate and a relatively small weight to the is all that can ever be proven-even had we ascribed
observations. In that case, the dynamical constraint it to 90% of the variance rather than only 10%. We do
( I ) is strictly enforced so that waves which frequencies think the results of these simple experiments are suf-
do not obey the dispersion relation (3) are quite rapidly ficiently encouraging to justify future experiments with
filtered out. On the other hand, since the model always more complex and realistic dynamical models and
maintains constant wave amplitudes, both the filter more rigorous data reduction procedures. Such efforts
and the smoother then react very slowly to changes in are now underway.
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